Implications of three-step swimming patterns in bacterial chemotaxis.

نویسندگان

  • Tuba Altindal
  • Li Xie
  • Xiao-Lun Wu
چکیده

We recently found that marine bacteria Vibrio alginolyticus execute a cyclic three-step (run-reverse-flick) motility pattern that is distinctively different from the two-step (run-tumble) pattern of Escherichia coli. How this novel, to our knowledge, swimming pattern is regulated by cells of V. alginolyticus is not currently known, but its significance for bacterial chemotaxis is self-evident and will be delineated herein. Using a statistical approach, we calculated the migration speed of a cell executing the three-step pattern in a linear chemical gradient, and found that a biphasic chemotactic response arises naturally. The implication of such a response for the cells to adapt to ocean environments and its possible connection to E. coli's response are also discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Swimming patterns and dynamics of simulated Escherichia coli bacteria.

A spatially and temporally realistic simulation of Escherichia coli chemotaxis was used to investigate the swimming patterns of wild-type and mutant bacteria within a rectangular arena in response to chemoattractant gradients. Swimming dynamics were analysed during long time series with phase-space trajectories, power spectra and estimations of fractal dimensions (FDs). Cell movement displayed ...

متن کامل

Bacterial chemotaxis in linear and nonlinear steady microfluidic gradients.

Diffusion-based microfluidic devices can generate steady, arbitrarily shaped chemical gradients without requiring fluid flow and are ideal for studying chemotaxis of free-swimming cells such as bacteria. However, if microfluidic gradient generators are to be used to systematically study bacterial chemotaxis, it is critical to evaluate their performance with actual quantitative chemotaxis tests....

متن کامل

Chemotactic drift speed for bacterial motility pattern with two alternating turning events

Bacterial chemotaxis is one of the most extensively studied adaptive responses in cells. Many bacteria are able to bias their apparently random motion to produce a drift in the direction of the increasing chemoattractant concentration. It has been recognized that the particular motility pattern employed by moving bacteria has a direct impact on the efficiency of chemotaxis. The linear theory of...

متن کامل

Novel Pseudotaxis Mechanisms Improve Migration of Straight-Swimming Bacterial Mutants Through a Porous Environment

UNLABELLED Bacterial locomotion driven by flagella is given directionality by the chemotaxis signal transduction network. In the classic plate assays of migration in porous motility agar, efficient motility is compromised in chemotaxis mutants of diverse bacteria. Nonchemotactic mutants become trapped within the agar matrix. Suppressor mutations that prevent this entanglement but do not restore...

متن کامل

Genetic and behavioral analysis of flagellar switch mutants of Salmonella typhimurium.

At the interface between the sensory transduction system and the flagellar motor system of Salmonella typhimurium, the switch complex plays an important role in both sensory transduction and energy transduction. To examine the function of the switch complex, we isolated from 10 cheY mutants 500 pseudorevertants with a suppressor mutation in one of the three genes (fliG, fliM, and fliN) encoding...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biophysical journal

دوره 100 1  شماره 

صفحات  -

تاریخ انتشار 2011